Question			Answer	Marks	Guidance
1	(i)		$\begin{aligned} & x=\sec \theta, y=2 \tan \theta \\ & \Rightarrow \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta}=\frac{2 \sec ^{2} \theta}{\sec \theta \tan \theta} \\ & =\frac{2 \sec \theta}{\tan \theta}=\frac{2}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}=\frac{2}{\sin \theta}=2 \operatorname{cosec} \theta^{*} \end{aligned}$	M1A1 A1 [3]	M1 for their $(\mathrm{d} y / \mathrm{d} \theta) \div \sec \theta \tan \theta$ in terms of θ A1 cao (oe) allow for unsimplified form even if subsequently cancelled incorrectly ie can isw cao www (NB AG) - must be at least one intermediate step between $\frac{2 \sec \theta}{\tan \theta} \quad \frac{2}{\sin \theta}$ or $2 \operatorname{cosec} \theta$
1	(ii)		$\begin{aligned} & x^{2}=\sec ^{2} \theta=1+\tan ^{2} \theta=1+1 / 4 y^{2} \\ & \Rightarrow \quad y^{2}=4\left(x^{2}-1\right)=4 x^{2}-4 * \end{aligned}$	M1 A1 [2]	$\sec ^{2} \theta=1+\tan ^{2} \theta$ (oe) used www NB AG
		OR	$4 \tan ^{2} \theta=4 \sec ^{2} \theta-4$ $\Rightarrow 1+\tan ^{2} \theta=\sec ^{2} \theta$ which is true	B1* B1dep*	Correct substitution of x and y into the given answer Dependent on previous mark - must simplify/remove the factor of 4 from each term and state that the correctly derived trig identity is true
1	(iii)		$\begin{aligned} & V=\pi \int_{1}^{2} y^{2} \mathrm{~d} x=\pi \int_{1}^{2}\left(4 x^{2}-4\right) \mathrm{d} x \\ & \frac{4}{3} x^{3}-4 x \\ & \quad \pi\left[\begin{array}{l} 4 \\ 3 \end{array} x^{3}-4 x\right]_{1}^{2}=\frac{16}{3} \pi \end{aligned}$	M1 B1 A1 [3]	$k \pi \int_{1}^{2}\left(4 x^{2}-4\right)(\mathrm{d} x)$ with $k=1$ or $1 / 2$, allow correct limits later condone lack of $\mathrm{d} x$ $(4 / 3) x^{3}-4 x\left(\text { or }(2 / 3) x^{3}-2 x\right)$ exact - mark final answer

(use of $1-\cot ^{2} \theta$ could lead to M0 M1 M1 B1)
allow if $\cot \theta=0$ not seen (ie quadratic equation followed by $\cot \theta-2=0$ or $\cot \theta=2$)
(omission of $\cot \theta=0$ could gain $\mathrm{M} 1, \mathrm{M} 1, \mathrm{M} 0, \mathrm{~B} 1$)
as above
allow if $\cos \theta=0$ not seen (as above)

in both cases,

-1 if extra solutions in the range are given (dependent on at least B1 being scored)-not their incorrect solutions eg $26.6^{\circ},-153.4^{\circ}, 0^{\circ}, 180^{\circ},-180^{\circ}$ would obtain B1
-1 MR if answers given in radians $(-\pi / 2, \pi / 2,0.464,-2.68$ (-1.57.1.57) or multiples of π that round to these, or better) (dependent on at least B1 being scored) to lose both of these, at least B2 would need to be scored.

$8 \quad \sec ^{2} \theta=4$		
$\Rightarrow \quad \frac{1}{\cos ^{2} \theta}=4$	M1	$\sec \theta=1 / \cos \theta$ used
$\Rightarrow \quad \cos ^{2} \theta=1 / 4$		
$\Rightarrow \quad \cos \theta=1 / 2$ or $-1 / 2$	M1	$\pm 1 / 2$
$\Rightarrow \quad \theta=\pi / 3,2 \pi / 3$	A1 A1	allow unsupported answers
$\begin{aligned} & \text { OR } \\ & \sec ^{2} \theta=1+\tan ^{2} \theta \end{aligned}$	M1	
$\Rightarrow \quad \tan ^{2} \theta=3$		
$\Rightarrow \quad \tan \theta=\sqrt{ } 3$ or $-\sqrt{ } 3$	A1 A1	$\pm \sqrt{3}$ allow unsupported answers
$\Rightarrow \quad \theta=\pi / 3,2 \pi / 3$	[4]	

