Question		ion	Answer	Marks	Guidance
1	(i)		$x = \sec \theta, y = 2\tan \theta$		
			$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}\theta}{\mathrm{d}x/\mathrm{d}\theta} = \frac{2\sec^2\theta}{\sec\theta\tan\theta}$	M1A1	M1 for their $(dy/d\theta) \div \sec \theta \tan \theta$ in terms of θ A1 cao (oe) allow for unsimplified form even if subsequently cancelled incorrectly ie can isw
			$=\frac{2\sec\theta}{\tan\theta}=\frac{2}{\cos\theta}\cdot\frac{\cos\theta}{\sin\theta}=\frac{2}{\sin\theta}=2\csc\theta^*$	A1	cao www (NB AG) – must be at least one intermediate step between $\frac{2 \sec \theta}{\tan \theta}$ $\frac{2}{\sin \theta}$ or $2 \csc \theta$
				[3]	
1	(ii)		$x^2 = \sec^2 \theta = 1 + \tan^2 \theta = 1 + \frac{1}{4} y^2$	M1	$\sec^2\theta = 1 + \tan^2\theta$ (oe) used
			$\Rightarrow y^2 = 4(x^2 - 1) = 4x^2 - 4 *$	A1	www NB AG
				[2]	
		OR	$4\tan^2\theta = 4\sec^2\theta - 4$	B1*	Correct substitution of x and y into the given answer
			\Rightarrow 1+tan ² θ = sec ² θ which is true	B1dep*	Dependent on previous mark – must simplify/remove the factor of 4 from each term and state that the correctly derived trig identity is true
1	(iii)		$V = \pi \int_{-\infty}^{2} y^2 dx = \pi \int_{-\infty}^{2} (4x^2 - 4) dx$	M1	$k\pi \int_{-\infty}^{\infty} (4x^2 - 4)(dx)$ with $k = 1$ or $1/2$, allow correct limits later
					J_1 condone lack of dx
			$\frac{4}{3}x^3 - 4x$	B1	$(4/3)x^3 - 4x$ (or $(2/3)x^3 - 2x$)
			$\pi \left[\frac{4}{3}x^3 - 4x\right]_{1}^{2} = \frac{16}{3}\pi$	A1	exact – mark final answer
				[3]	

Question	Answer	Marks	Guidance
2	$\csc x + 5 \cot x = 3 \sin x$		
	$\Rightarrow \frac{1}{\sin x} + \frac{5\cos x}{\sin x} = 3\sin x$	M1	using cosec $x = 1/\sin x$ and cot $x = \cos x / \sin x$
	$\Rightarrow 1+5 \qquad x=3 \qquad {}^{2}x = 1-\cos^{2}x)$	M1	c ${}^{2}x + \sin^{2}x = 1$ used (both M marks must be part of same solution in order to score both marks)
	$\Rightarrow 3\cos^2 x + 5\cos x - 2 = 0 *$	A1	AG (Accept working backwards, with same stages needed)
	$\Rightarrow (3\cos x - 1)(\cos x + 2) = 0$	M1	use of correct quadratic equation formula (can be an error when substituting into correct formula) or factorising (giving correct coeffs 3 and -2 when multiplied out) or comp square oe
	$\Rightarrow \cos x = 1/3,$	A1	$\cos x = 1/3$ www
	$x = 70.5^{\circ},$ 289.5°	A1 A1	for 70.5° or first correct solution, condone over-specification (ie 70.5° or better eg 70.53° , 70.5288° etc),
			for 289.5° or second correct solution (condone over-specification) and no others in the range
			Ignore solutions outside the range
			SCA1A0 for incorrect answers that round to 70.5 and 360-their ans, eg 70.52 and 289.48
			SC Award A1A0 for 1.2,5.1 radians (or better)
			Do not award SC marks if there are extra solutions in the range
		[7]	

Question	Answer		Guidance
3	$1 \underbrace{\frac{\sqrt{2}}{45^{\circ}}}_{1} \tan 45^{\circ} = 1/1 = 1^{\ast} \qquad \sqrt{3} \underbrace{\frac{30}{2}}_{1} \tan 30^{\circ} = 1/\sqrt{3^{\ast}}$		For both B marks AG so need to be convinced and need triangles but further explanation need not be on their diagram. Any given lengths must be consistent.
		B1	Need $\sqrt{2}$ or indication that triangle is isosceles oe
		B1	Need all three sides oe
	$\tan 75^\circ = \tan (45^\circ + 30^\circ)$	M1	use of correct compound angle formula with 45°,30° soi
	$=\frac{\tan 45 + \tan 30}{1 - \tan 45 \tan 30} = \frac{1 + 1/\sqrt{3}}{1 - 1/\sqrt{3}}$	A1	substitution in terms of $\sqrt{3}$ in any correct form
	$= \frac{1+\sqrt{3}}{-1+\sqrt{3}}$ $= \frac{(1+\sqrt{3})^2}{-1+\sqrt{3}}$	M1	eliminating fractions within a fraction (or rationalising, whichever comes first) provided compound angle formula is used as $tan(A+B) = tan(A\pm B)/(1\pm tanAtanB)$.
	3-1 (oe eg $\frac{3+\sqrt{3}}{3-\sqrt{3}} = \frac{(3+\sqrt{3})^2}{9-3}$)	M1	rationalising denominator (or eliminating fractions whichever comes second)
	$=\frac{(3+2\sqrt{3}+1)}{3-1}=2+\sqrt{3}*$	A1	correct only, AG so need to see working
		[7]	

Question	Answer		Guidance
4	LHS = sec ² θ + cosec ² θ = $\frac{1}{\cos^2 \theta} + \frac{1}{\sin^2 \theta}$	M1	Use of $\sec\theta = 1/\cos\theta$ and $\csc\theta = 1/\sin\theta$ not just stating
	$=\frac{\sin^2\theta + \cos^2\theta}{\cos^2\theta\sin^2\theta}$	M1	adding
	$=\frac{1}{\cos^2\theta\sin^2\theta}$	A1	use of $\cos^2\theta + \sin^2\theta = 1$ soi
	$=\sec^2\theta\csc^2\theta$	A1	AG
	OR		
	$\sec^2\theta + \csc^2\theta = \tan^2\theta + 1 + \cot^2\theta + 1 = \sin^2\theta / \cos^2\theta + \cos^2\theta / \sin^2\theta + 2$	M1	correct formulae oe
	$=\frac{\cos^4\theta + \sin^4\theta + 2\sin^2\theta\cos^2\theta}{\sin^2\theta\cos^2\theta}$	M1	adding
	$=\frac{(\cos^2\theta + \sin^2\theta)^2}{\sin^2\theta\cos^2\theta} = \frac{1}{\sin^2\theta\cos^2\theta} = \sec^2\theta\csc^2\theta$	A1 A1	use of Pythagoras AG
	OR working with both sides Eg LHS $\sec^2\theta + \csc^2\theta = \tan^2\theta + 1 + \cot^2\theta + 1 = \tan^2\theta + \cot^2\theta + 2$ RHS $= (1 + \tan^2\theta)(1 + \cot^2\theta) = 1 + \tan^2\theta + \cot^2\theta + \tan^2\theta \cot^2\theta$ $= \tan^2\theta + \cot^2\theta + 2 = LHS$	M1 M1 A1 A1	Correct formulae used on one side Use of same formulae on other side Use of $tan\theta cot\theta = 1$ oe, dependent on both method marks Showing equal
		[4]	

5	$\csc^2\theta = 1 + \cot^2\theta$			(use of $1-\cot^2\theta$ could lead to M0 M1 M1 B1)
\Rightarrow	$1 + \cot^2 \theta = 1 + 2\cot \theta$	M1	correct trig identity used	
\Rightarrow	$\cot^2 \theta - 2\cot \theta = 0$			
\Rightarrow	$\cot \theta (\cot \theta - 2) = 0$	M1	factorising oe	allow if $\cot \theta = 0$ not seen (ie quadratic equation followed
\Rightarrow	$\cot \theta = 0,$			by $\cot \theta - 2 = 0$ or $\cot \theta = 2$)
	and $\cot \theta = 2$, $\tan \theta = \frac{1}{2}$	M1	both needed and $\cot \theta = 1/\tan \theta$ soi	
	$\Rightarrow \theta = 26.6^{\circ}, -153.4^{\circ}, -90^{\circ}, 90^{\circ}$	B3,2,1,0	-90° , 90° , 27° , -153° or better www	(omission of $\cot \theta = 0$ could gain M1, M1, M0, B1)
			•••••	
OR	1 $2\cos\theta \sin\theta + 2\cos\theta$			
S A S	$\frac{1}{\sin^2\theta} = 1 + \frac{1}{\sin\theta} = \frac{1}{\sin\theta}$		compatible aquivalants and s and line	
\Rightarrow sin	$h^2 \theta + 2 \sin \theta \cos \theta - 1 = 0$	M1	confect trig equivalents and a one line	as above
$\Rightarrow 2 s$	$\sin\theta\cos\theta - \cos^2\theta = 0$	1011	equation (or common denominator) formed	
\Rightarrow co	$\theta (2\sin\theta - \cos\theta) = 0$	M1	use of Pythagoras and factorising	allow if $\cos \theta = 0$ not seen (as above)
\Rightarrow co	s $\theta = 0$, and $\tan \theta = \frac{1}{2}$	M1	both needed and $\tan \theta = \sin \theta / \cos \theta$ or soi	
	$\theta = 26.6^{\circ}, -153.4^{\circ}, -90^{\circ}, 90^{\circ}$	B3,2,1,0	accept 27°153° as above	in both cases,
				-1 if extra solutions in the range are given (dependent on
				at least B1 being scored)-not their incorrect solutions eg
				26.6°,-153.4°, 0°,180°,-180° would obtain B1
				-1 MR if answers given in radians (- $\pi/2,\pi/2,0.464$, -2.68
		[6]	answers, no working, award B3,2,1,0	(-1.57.1.57) or multiples of π that round to these, or better)
			(it is possible to score say M1 then B3 ow)	(dependent on at least B1 being scored)
				to lose both of these, at least B2 would need to be scored.

$ \begin{array}{l} 6 & \operatorname{cosec}^2 \theta \\ \Rightarrow & 1 + \cot^2 \theta \\ \Rightarrow & \cot^2 \theta \\ \Rightarrow & (\cot \theta - \\ \Rightarrow & \cot \theta = \\ & \cot \theta = \end{array} $	$\theta = 1 + \cot^2 \theta$ $\theta - \cot \theta = 3 *$ $-\cot \theta - 2 = 0$ $2)(\cot \theta + 1) = 0$ $2, \tan \theta = \frac{1}{2}, \ \theta = 26.57^{\circ}$ $-1, \tan \theta = -1, \ \theta = 135^{\circ}$	E1 M1 A1 M1 A1 A1 [6]	clear use of $1+\cot^2\theta = \csc^2\theta$ factorising or formula roots 2, -1 cot = 1/tan used $\theta = 26.57^{\circ}$ $\theta = 135^{\circ}$ (penalise extra solutions in the range (-1))
--	---	---	---

7 $\sec \theta = x/2$, $\tan \theta = y/3$ $\sec^2 \theta = 1 + \tan^2 \theta$ $\Rightarrow x^2/4 = 1 + y^2/9$ $\Rightarrow x^2/4 - y^2/9 = 1 *$	M1 M1 E1	$\sec^2 \theta = 1 + \tan^2 \theta$ used (oe, e.g. converting to sines and cosines and using $\cos^2 \theta + \sin^2 \theta = 1$) eliminating θ (or x and y) www
OR $x^2/4-y^2/9=4\sec^2\theta/4-9\tan^2\theta/9$ $=\sec^2\theta-\tan^2\theta=1$	[3]	

8 ↑ ↑ ↑ ↑ ↑	$\sec^{2} \theta = 4$ $\frac{1}{\cos^{2} \theta} = 4$ $\cos^{2} \theta = \frac{1}{4}$ $\cos \theta = \frac{1}{2} \text{ or } -\frac{1}{2}$ $\theta = \frac{\pi}{3}, \frac{2\pi}{3}$	M1 M1 A1 A1	sec $\theta = 1/\cos \theta$ used $\pm \frac{1}{2}$ allow unsupported answers
$ \begin{array}{c} \mathbf{OR} \\ \operatorname{sec}^2 \theta \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \end{array} $	$ \begin{aligned} \theta &= 1 + \tan^2 \theta \\ \tan^2 \theta &= 3 \\ \tan \theta &= \sqrt{3} \text{ or } -\sqrt{3} \\ \theta &= \pi/3, \ 2\pi/3 \end{aligned} $	M1 M1 A1 A1 [4]	$\pm \sqrt{3}$ allow unsupported answers